🔍📊 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗧𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 💡📈
Data science uses a variety of powerful techniques to turn raw data into actionable insights. Here's a simplified overview:
𝟏. 𝐃𝐚𝐭𝐚 𝐂𝐨𝐥𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:
・Web Scraping: Extract data from websites.
・Data Mining: Uncover patterns from large datasets.
・Surveys: Collect data through questionnaires.
・APIs: Access data programmatically.
・Data Acquisition: Gather data from various sources.
𝟐. 𝐃𝐚𝐭𝐚 𝐂𝐥𝐞𝐚𝐧𝐢𝐧𝐠 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:
・Missing Data Imputation: Fill in missing values.
・Outlier Detection & Treatment: Identify and address anomalies.
・Categorical Encoding: Convert categories into numeric values.
・Feature Scaling: Normalize data for consistency.
𝟑. 𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:
・Bar Charts: Compare categorical data.
・Histograms: Display data distribution.
・Scatter Plots: Show relationships between variables.
・Heatmaps: Visualize data intensity.
・Box Plots: Summarize data variation.
・Line Graphs: Track changes over time.
・Pie Charts: Show part-to-whole relationships.
𝟒. 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:
・Supervised Learning: Train models using labeled data.
・Unsupervised Learning: Discover hidden patterns in data.
・Semi-Supervised Learning: Use both labeled and unlabeled data.
・Reinforcement Learning: Learn by interacting with the environment.
・Deep Learning: Model complex patterns using neural networks.
𝟓. 𝐍𝐚𝐭𝐮𝐫𝐚𝐥 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 (𝐍𝐋𝐏) 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬:
・Text Classification: Categorize text data.
・Named Entity Recognition (NER): Identify entities within text.
・Sentiment Analysis: Detect emotions or opinions in text.
・Topic Modeling: Find themes in text data.
・Machine Translation: Translate text between languages.
・Speech Recognition & Generation: Convert speech to text and vice versa.
・Text Summarization: Generate concise summaries of longer texts.
Happy Learning! ✨
Comments
Post a Comment